Pre-class Warm-up!!!

In Sections 1.4, 1.5, 1.6 we learn specific techniques to solve certain types of differential equation:

- 1.4 Separating the variables
- 1.5 Linear first order equations
- 1.6 Special substitutions, homogeneous equations, Bernoulli equations, exact equations, reducing the order of an equation.

1.4 Separating the variables

This applies to differential equations dy/dx = g(x)h(y)where we can put everything to do with x on one side of the = and everything to do with y on the other side.

We learn

- the method of solving these equations
- It applies to the equations for population growth and Newton's law of cooling.
- Sometimes solutions are given implicitly.
- We meet again the term general solution
- We don't need: singular solutions.

Page 41 question 15: Find the general solution of

$$\chi^{2}(2y^{2}-1)\frac{dy}{dx} = \chi y^{2} - y^{4}$$

Solution. Note: xy1-y4 = (x-1) ij

We can try to make y the subject of the equation, but we can't do it. y is defined implicitly as a function of x.

Leave it like that!

Done

Why does the method work? For an equation dy/dx = g(x)h(y) we get

Which piece of theory did we use to do this?

a. The fundamental theorem of calculus.

b. The chain rule

c. Green's theorem

d. Integration by substitution \checkmark

e. Something else

Population growth

Page 41 question 34: In a certain culture of bacteria the number of bacteria increased sixfold in 10 hours. How long did it take for the population to double?

*

$$dP = kP$$
 for some constant

Solve the equation :

$$\int dP = \int k dt$$

$$\ln P = kt + C, \quad \text{for some constant}$$

Newton's law of cooling

Page 42 question 43: A pitcher of buttermilk initially at 25 degrees C is to be cooled by setting it on the front porch, where the temperature is 0 degrees C. Suppose that the temperature of the buttermilk has dropped to 15 degrees C after 20 min. When will it be at 5 degrees C?

where T(F) is the temperature at

time t, A is the ambient temperature

separate the variables;

 $q_{\downarrow} = R(I - A)$

